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Abstract— This paper presents a compressed sensing (CS)
based encryption scheme for wireless neural recording. An ultra-
high efficiency was achieved by leveraging CS for simultaneous
data compression and encryption. CS enables sub-Nyquist sam-
pling of neural signals by taking advantage of their intrinsic
sparsity, while the CS process simultaneously encrypts the data
with the sampling matrix being the cryptographic key. To share
the key over an insecure wireless channel, we implemented
an elliptic-curve cryptography (ECC) based key exchanging
protocol. Local key shuffle and updating were adopted to
eliminate the risks of potential information leakage. CS was
executed in an application-specific integrated circuits (ASIC)
fabricated in 180nm CMOS technology. Mixed-signal circuits
were designed to optimize the power efficiency of the matrix-
vector multiplication (MVM) of the CS operation. The ECC was
implemented in a low-power Cortex-M0 based microcontroller
(MCU). To be protected from timing attacks, the implementation
avoided possible data-dependent branches. A wireless neural
recorder prototype has been developed to demonstrate the pro-
posed scheme. The prototype achieved an 8x data rate reduction
and a 35x power saving compared with conventional implemen-
tation. The overall power consumption of ASIC and MCU was
442µW during the encrypted wireless transmission. The average
correlated coefficient between the reconstructed signals and the
uncompressed signals was 0.973, while the ciphertext-only attacks
(CoA) achieved no better than 0.054 over 200,000 attacks. This
work demonstrates a promising data compression and encryption
scheme that can be used in a wide range of low-power signal
recording systems with security requirements.

Index Terms— Hardware security, compressed sensing,
cryptographic circuits, low power, mixed-signal IC, wireless,
neural recording.

I. INTRODUCTION

LARGE-SCALE neural recording with high energy effi-
ciency and safety is crucial to the growing number of

therapies employing closed-loop neurostimulation [1] and neu-
roprosthetics [2] to treat brain injury and disease. Although the
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circuits and system community has devoted a considerable
amount of effort to improve the performance and power
efficiency of neural recording systems, few investigations have
been done to mitigate the security risks. In fact, cybersecu-
rity issues have already emerged in FDA-approved medical
devices [3]. Medical devices, including neural interfacing
devices, pose serious risks from malicious attacks. Compro-
mised neural interfacing devices may not only disclose critical
health-related information, but also leave the users vulnerable
to life-threatening attacks. Thus, it is urgent to investigate
secure neurotechnologies.

Battery-powered wireless neural recording devices are espe-
cially vulnerable to malicious attacks, and their restrained
energy budget imposes a significant challenge to implementing
data encryption. A typical wireless neural recorder consists
of the following key blocks: low-noise amplifiers and filters,
analog-to-digital converters (ADCs), wireless transmitters, and
optional digital signal processing units. Energy-efficient cir-
cuit design techniques of each block have been extensively
discussed in the literature. For a low-power neural amplifier
design with a noise efficiency factor (NEF) of 3, the energy
cost is around 0.1nJ/bit [4]. For a low-power ADC design with
a Walden figure-of-merit (FoM) of 100fJ/conv-step, the energy
cost is around 0.01nJ/bit [5]. For a low-power wireless trans-
ceiver design for biomedical applications, an energy cost
of 1nJ/bit is typical, while ultra-low power designs with energy
costs below 1nJ/bit have also been reported [6]–[8]. However,
the hardware implementation of data encryption standards by
application-specific integrated circuits (ASICs) and general-
purpose processors typically takes 1nJ/bit and 10nJ/bit, respec-
tively [9]–[11]. As a result, standard encryption algorithms
may not meet the power requirement for direct integration
into low-power neural recorders without optimization.

In this work, we proposed a novel encryption scheme for
neural recording that achieves ultra-high energy efficiency by
leveraging compressed sensing (CS) technique, as illustrated
in Fig. 1. The key concept of CS is that a sparse signal
can be sampled at a reduced rate (below Nyquist frequency)
based on the actual amount of information it contains [12].
Neural signals are proven to be sparse in certain domains
and pre-learned dictionaries [13]–[15]. Recent studies have
successfully demonstrated highly efficient CS based neural
recorder designs [14]–[20]. Moreover, the CS theory also
permits its application in data encryption [21]. It has been
proven that CS can provide a computational guarantee of
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Fig. 1. Illustration of the proposed neural recording system with CS
based encryption. The conventional character alice represents the neural
recorder, Bob represents the authorized external system, and Eve represents
the illegitimate parties that tend to steal private information by eavesdropping.

secrecy, provided that an adversary doesn’t know the sampling
matrix [22]. Recently, several works have explored this prop-
erty in image processing [23], [24] and internet of things (IoT)
applications [25], [26]. We presented in this paper, to the best
of our knowledge, the first implementation in neural recording
systems.

For CS based encryption to be successfully implemented
in a neural recording system, several challenges must be
addressed. First, the sampling matrix (i.e. the cryptographic
key) must be safely exchanged between the neural recorder and
authorized external system. Second, CS sampling is a linear
projection process, where the energy features of the signal may
be revealed without an accurate decipher [27]. Interception of
energy features could be used to disclose age, gender, and
potentially other information about the subject, thus, additional
mechanisms must be introduced to protect these features.
Third, the hardware implementation must be protected from
side-channel attacks, such as timing attacks [28], [29]. Last but
not least, the overall encryption cannot lead to a significant
power penalty. To overcome these challenges, we proposed
a novel system that combines an optimized integration of
an ASIC and a general-purpose microcontroller (MCU). The
ASIC performs mixed-signal CS operations at ultra-low power
consumption, while the MCU handles the low duty-cycle key
sharing, shuffling, and updating. An elliptic-curve cryptog-
raphy (ECC) based protocol was implemented in the MCU
with time-constant executions. A prototype design using the
proposed scheme achieved an 8x data rate reduction and a 35x
power saving compared with traditional implementation.

The rest of this paper is organized as follows. Section II
describes the operating principles of the proposed system.
Section III presents the implementation details. Section IV
shows the experimental results. Section V discusses the limi-
tations and future directions. Finally, Section VI concludes the
paper.

II. OPERATING PRINCIPLES

A. CS for Joint Signal Compression & Encryption

We first briefly review the fundamentals of CS. Suppose
the input signal x has a sparse representation s on a cer-
tain basis � . CS theory predicts that x can be sampled
at a reduced rate (depending on its sparsity) with nearly

no information loss. The compressed measurement y can be
expressed as:

y = �x (1)

where x ∈ R
N×1, y ∈ R

M×1, and � ∈ R
M×N . Note that

N>M , and the term N/M is referred to as compression
ratio (CR). Although y cannot be solved directly from Eq. (1),
if the sampling matrix � is incoherent with � (obeying
the restricted isometry property (RIP) [30]–[32]), the sparse
representation s, thus the original signal x, can be solved as a
convex optimization problem [31]:

min ||s||0 (or 1), s.t. y = �x = ��−1s (2)

In this work, we used a l1-norm based reconstruction algo-
rithm [12]. It has been proven that a binary random matrix
� consisting of 0 and 1 meets the minimum requirements in
fulfilling the incoherent requirement [31]. Prior works showed
improved reconstruction performance and resistance to noises
by having additional resolution [15], [20]. Here, we adopted a
4-bit � consisting of elements of {0, ±1/8, ±2/8, ±3/8, ±4/8,
±5/8, ±6/8, ±7/8} following a Gaussian distribution. The
hardware implementation will be discussed in Section III-A.

Since the introduction of CS in 2006 [12], many algo-
rithms and techniques have been proposed for improving
the reconstruction performance. In addition to the convex
optimization based approaches (under different norm regu-
larizations), greedy strategy approximation based algorithms
(e.g. orthogonal matching pursuit [33]), dictionary learn-
ing [36], adaptive CS [34], as well as deep learning [35] have
been proposed to speed up the process of finding the optimal
solution. Our objective in this work was not to achieve record-
breaking reconstruction performance. Rather, we focused on
the hardware design and optimization of the sampling end
(i.e. the neural recorder).

The secrecy property of CS has also been rigorously
discussed in the literature [21], [22], [37], [38]. Although
achieving Shannon’s perfect secrecy is conditional [38], com-
putational secrecy can be guaranteed [21]. Encryption algo-
rithms with computational secrecy are commonly adopted
in cryptography standards, given that extracting information
without the key is a nondeterministic polynomial time problem
(NP-problem) [22], [37]. However, since CS sampling is a
linear projection process, the energy of x can be revealed in
y without accurately deciphering the measurement [27]. The
energy features of neural signals can contain biometrics and
private information of the subject. The information may be
leaked to over-the-air eavesdroppers if no additional protection
is used.

To mitigate this risk, Chen and colleagues proposed a
method of inserting watermarks to mask the energy fea-
tures [26]. Cambareri and colleagues proposed a multiclass
encrypting scheme [39]. In our application of neural recording,
we hope not to degrade the reconstructed signal quality or sig-
nificantly increase the hardware complexity. Thus, we pro-
posed a pseudo-random key shuffle as well as a synchronized
key updating for disturbing the energy features. The power
penalty of this scheme was negligible in the overall system
due to its low active duty cycle.
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B. Elliptic-Curve Cryptography and Key Exchanging

There are two types of encryption schemes, known
as symmetric encryption and asymmetric encryption [40].
Symmetric encryption uses one key to cipher and decipher the
messages. Asymmetric encryption uses a pair of keys: a public
key to cipher the messages, and a private key to decipher
them. In symmetric encryption, the key must be kept secret
once shared between the sender and receiver. Conversely,
in asymmetric encryption, the public keys are available to all,
and the private keys are never shared. Asymmetric encryption
avoids sharing private keys at the expense of computation.
To reduce the computational cost, we adopted a scheme
where the asymmetric encryption algorithm was only used for
establishing the secret keys, which were used for CS based
symmetric encryption.

Rivest-Shamir-Adleman (RSA) algorithm has been widely
used for asymmetric encryption, however, ECC based encryp-
tion can achieve the same level of security as RSA with a
shorter key length, a lower computation cost, and a lower
latency [9]. For example, a 224-bit ECC achieves an equivalent
security level of a 2048-bit RSA, which was a security level
recommended by the National Institute of Standards and
Technology (NIST) in 2015 [41]. In this work, we adopted a
256-bit ECC based key exchanging protocol, namely Elliptic-
curve Diffie-Hellman (ECDH) [42]. ECDH is an ECC variant
of the classic Diffie-Hellman protocol [43]. ECDH allows two
parties to establish a shared secret key independently. The
shared secret key can then be used directly or for deriving
other keys, which in our case are the CS sampling matrices.
The detailed implementation is described in Section III-B.

C. Framework of the Proposed Hybrid Encryption

In a typical scenario of neural signal transmission, the neural
recorder (the conventional character Alice) sends the sampled
data to the authorized external system (Bob) via a low-power
insecure wireless channel. Illegitimate parties (Eve) may steal
the messages by eavesdropping. In this work, we adopted a
commonly used threat model that Eve knows the encryption
algorithms (including the parameters of elliptic curves, field,
etc.), the communication protocol, as well as the public keys,
but doesn’t have access to the unciphered plaintext and the
private key (the CS sampling matrices �S). This is also known
as a ciphertex-only attack (CoA) model [26]. Considering
the practical use scenarios of wearable or implantable neural
recording devices, we assumed that the adversary won’t gain
physical ownership of the device during its signal transmission,
but may non-invasively detect the power profile of the devices
(e.g. using electromagnetic approaches) and deduce timing
characteristics from power analysis [45]. Finally, the attack
range we considered in this work is within a personal area
network (PAN), not telecommunication networks.

Fig. 2 illustrates the basic operation principles of the pro-
posed cryptographic neural recording system. The operation
procedure is as follows.

1) Alice and Bob first agree on a set of domain parameters
(public) for the cryptography, including the parameters
of the elliptic curve, the generator point G, etc.;

Fig. 2. The operation of the proposed neural recording system. Dashed
lines indicate the communication is via an insecure wireless communication
channel.

2) Alice picks a private key Kα and generates a public
key KA = Kα � G, where � is a multiplication defined
by ECC; Similarly, Bob picks a private key Kβ and
generates a public key KB = Kβ � G;

3) Alice and Bob exchange their public keys KA and KB;
4) Alice and Bob generate a shared secret key Ks using

their own private keys and the public keys provided by
the other party:

Ks = KA � Kβ = (Kα � G) � Kβ (← Bob) (3)

= Kα � (G � Kβ) = Kα � KB (← Alice) (4)

so that Alice and Bob have the same secret key, but Eve
cannot get it;

5) Alice and Bob individually generate a set of sampling
matrices �S using the secret key Ks;

6) Alice performs CS on acquired neural signal x, and
sends the lower-dimensional measurement y to Bob;

7) Bob recovers the neural signal x from y by solving
optimization problem using �S;

8) Alice and Bob shuffle the �S according to a pre-agreed
protocol, and then repeat the CS encryption;
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Fig. 3. The high-level block diagram of the proposed system. The system
mainly consists of an ultra-low power ASIC for CS (always ON), and a
general-purpose Cortex-M0 MCU for ECC based key sharing (low duty cycle).

9) To prevent from using the same set of �S repeatedly,
Alice and Bob would update the KS (thus the sampling
matrix �S) periodically on a synchronized manner.

It should be noticed that the encryption scheme imple-
mented in this work doesn’t verify identities during the public
key exchanging process. The authentication process can be
established in various ways, such as implementing the digital
signature algorithm [44].

III. SYSTEM IMPLEMENTATION

The high-level block diagram of the proposed neural record-
ing system (Alice) is shown in Fig. 3. The system mainly con-
sists of an ultra-low power ASIC and a general-purpose MCU.
The ASIC executes CS measurements of neural signals using
mixed-signal circuits and sends out the measurements using an
on-chip wireless transmitter (Tx). The MCU executes the ECC
based key exchanging and handshakes with external receivers
via a 2.4GHz duplex wireless transceiver (Tx + Rx) for PAN
communication. The ASIC design and MCU implementation
are discussed in the subsequent sections.

On the other hand, a computer interfacing device (Bob) has
been designed. This device integrates a MCU and correspond-
ing wireless transceivers for pairing with the neural recorder
(Alice). A standard USB 2.0 port is integrated for high-speed
communication with the computer system. A MATLAB based
user interface has been developed for device configuration and
data logging [46], [47].

A. ASIC Design for Mixed-Signal CS

The block diagram of the ASIC design is shown in Fig. 4.
The ASIC integrates low-noise instrumentation amplifiers
(IA) and filters, a programmable gain amplifier (PGA),
a successive-approximation register (SAR) ADC, a CS proces-
sor, an ultra-low power wireless transmitter, and peripheral
circuits including power management units (not shown in the
figure). 16-channel IA and filters were integrated for pairing
with microelectrode array (MEA), but only one recording
channel is used in this work. The IA and wireless transmitter
design reuses aspects of our previous work [48]–[50].

Fig. 4. The block diagram of the mixed-signal ASIC for CS operation.

TABLE I

MIXED-SIGNAL MULTIPLICATION OF X AND �

The ASIC design focused on improving the energy effi-
ciency of the CS operation. In particular, the repeated matrix-
vector multiplication (MVM) between the input signal x and
the � dominates the system’s power consumption. In this
work, we avoided the power and silicon area consuming digital
multiplication by using a combination of analog processing
and simple digital logic. As discussed in the Section II-A,
we adopted � with a resolution of 4-bit. The common factor
of 1/8 among {0, ±1/8, ±2/8, ±3/8, ±4/8, ±5/8, ±6/8,
±7/8} is combined with the IA gain. Analog gain values of
{×4, ×5, ×6, ×7} are provided by a programmable gain
amplifier (PGA) before digitization. Results of ×2 and ×3 are
generated by shifting the samples of ×4 and ×6 after digiti-
zation by 1-bit to the right (�1), respectively. In this way,
power hungry digital multiplication is replaced by simple
logic operations. Negative numbers are generated by digital
complementation. Table I summarizes the operations. It should
be noticed that ×1 was sampled directly bypassing the PGA
by default, but it can also be generated by shifting the samples
of ×4 by 2 bits.

The signal processing flow of the CS measurement is as
follows. The neural signal is first amplified and conditioned
by the low-noise IA and filters. During an input period of
ti (Fig. 5), the signal xi is sampled four times in a sequence
with PGA gain values of {×4, ×5, ×6, ×7}. The four samples
are digitized by the SAR ADC and saved in corresponding
registers. The digital processor (DP) processes the samples
based on the �i, j , where j ∈ (1, M). The M results are sent
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Fig. 5. Illustration of the mixed-signal MVM operation and the timing of
the CS measurement. (a) and (b) show the arithmetical operation at time point
t1 and t2, respectively. (c) shows the timing diagram of the analog sampling,
digitization, and the digital processing.

to the accumulator registers (ACR) in 16 bits. The ACR adds
N samples during one CS measurement (eq. 1).

The input data rate fx is determined by the bandwidth
of the target neural signal. The output data rate fy is 1/CR
of fx . Given the frequency nature of intracranial EEG signals,
the fx is typically less than 500 Hz [51]. The PGA consists
of an operational amplifier with an open-loop gain of 75dB
over PVT in simulation. The closed-loop gain of the PGA
is set by programmable feedback resistors. The layout of
the resistors was carefully placed for good unit matching.
Post-layout Monte-Carlo simulation results showed that the
PGA achieved the required linearity for the 9-bit digitization.
The SAR ADC was designed with a 10-bit resolution with an
effective number of bits (ENoB) better than 9-bit. The PGA
and SAR ADC were designed with a bandwidth of at least
4 fx for the proposed CS operation, and the DP processes the
data in M fx . In practice, the bandwidth of the analog blocks
was designed with margin, and these blocks were gated when
not activated for power saving. N and M are programmable
on-chip for a CR of 2x to 16x. M is programmable to be
64, 96, or 128. The 16-bit CS measurement y is sent off-chip
serially. All CS operations are in real-time.

B. MCU Implementation of Key Exchanging

As discussed in Section II-B, ECC based algorithms have
advantages over conventional asymmetric cryptography algo-
rithms in terms of speed, security level (given a key length),
as well as the corresponding computational costs. These fea-
tures make it attractive for both security-critical applications
(e.g. virtual currency [52]) and resource-constrained applica-
tions, including wireless neural recording.

Among established elliptic curves, we chose Curve25519
for our application, because of its low requirements in
memory and computational resources. Curve25519 and the

corresponding Diffie-Hellman functions were originally pro-
posed by Daniel Bernstein in 2006 [42]. The function is a
field-restricted scalar multiplication on an elliptic curve E :

y2 = x3 + 486662x2 + x (x, y) ∈ F
2
p (5)

where p is 2255 − 19. When a point P (on the curve E)
multiplies a scalar S, it adds to itself (S-1) times to a point Q,
which remains on the curve E (the set forms an abelian group).
The computation only uses the x-coordinate, thus is also called
x-coordinate scalar multiplication. The x-coordinate scalar
multiplication is repeated twice (on each party) in the ECDH
protocol for generating the public key and the shared secret
key (as illustrated in Fig. 2), respectively.

Algorithm 1 Scalar Multiplication (Original)
Inputs: P (a point on the curve E), S (a scalar)
Output: Q (a point on the curve E)
1: Q ⇐ Ini tial point
2: for each bi t b o f S (254 downto 0) do
3: if b is 1 then
4: swap the values of P and Q
5: end if
6: (P, Q) ⇐ Ladderstep(P, Q)
7: if b is 1 then
8: swap the values of P and Q
9: end if

10: end for

In this work, we adopted a 256-bit key using a radix 232

representation for the code implementation. The x-coordinate
scalar multiplication can be efficiently computed using the
classic Montgomery ladder [53]. Algorithm 1 describes the
operation in pseudo-codes. Each Ladderstep performs one
differential addition and one doubling [54].

In order to make the implementation immune to timing
attacks, all input-dependent branches or operations, such as the
conditional swap in the original algorithm, should be avoided.
In this work, we modified the Ladderstep function into two
functions Ladderstep0 and Ladderstep1, as described in
Algorithm 2. These two functions have identical timing. The
execution of either function depends on the loop’s variable bit
b; thus, the timing dependence of the input data is eliminated.
In addition, the initial coordinates were randomly projected in
each execution according to [28] for resistance to differential
power attacks (DPA).

The 256-bit multiplication and squaring are the most com-
putationally intensive operations. The 32-bit Cortex-M0 exe-
cutes 32-bit multiplication in a single clock cycle, however,
the returned results are in 32-bit instead of a full 64-bit.
The 256-bit multiplication was implemented as a three-level
Karatsuba multiplication with time-constant implementation
[55], [56]. Squaring operations use the same Karatsuba algo-
rithm, but at a faster computing speed, thanks to the arithmetic
simplification and memory access reduction [57].

IV. EXPERIMENTAL RESULTS

The ASIC was fabricated in standard 180nm CMOS tech-
nology, occupying a silicon area of 2.5mm×0.6mm excluding
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Algorithm 2 Scalar Multiplication (Time-Constant
Implementation)
Inputs: P (a point on the curve E), S (a scalar)
Output: Q (a point on the curve E)
1: Q ⇐ Ini tial point
2: for each bi t b of S (254 downto 0) do
3: if b is 0 then
4: (P, Q) ⇐ Ladderstep0(P, Q)
5: else
6: (P, Q) ⇐ Ladderstep1(P, Q)
7: end if
8: end for

Fig. 6. (a) A micrograph of the fabricated CS ASIC. (b) A photo of
the assembled neural recording device. The device consists of a main PCB
integrating the ASIC and an extension PCB integrating the MCU and a
wireless transceiver.

the IO pads (Fig. 6 (a)). The system was assembled on a
4-layer printed circuit board (PCB) (Fig. 6 (b)). The main
PCB contained the ASIC and a micro-connector for pairing
with MEA. The MCU and the 2.4GHz wireless transceiver
were assembled on an extension PCB, which was connected to
the main PCB via a flexible cable. The device was powered by
3.7V lithium batteries. On-chip low-dropout regulators (LDOs)
provide 1.8V analog and digital supplies to the ASIC, while
the MCU and wireless transceiver use a 3.3V supply provided
by an external LDO on board. The weight of the assembled
device was 4.7g including a 46mAh battery.

The device was fully tested for functionality and perfor-
mance. The measured noise of the IA was 2.31μV with
an integral bandwidth of 0.5 to 250Hz. The IA gain was
programmable from 40 to 54dB. The measured distortion at
100Hz was below -60dB, and the common-mode rejection
ratio was above 73dB. The bandwidth of the PGA was 20kHz.
The measured ENoB of the SAR ADC was 9.3 bit.

The CS function was tested using pre-recorded intracranial
EEGs of epilepsy patients [58]. The signal was carefully
reviewed and the seizure onset times were annotated by
experts. In our experiment, we used a subset of the database
that contains the recordings of two patients. The recorded EEG
was replayed by an arbitrary signal generator in a resolution
of 16-bit, followed by a 5th order low-pass filter with a cut-off

Fig. 7. Experimental results of CS and signal reconstruction with different
compression ratio (CR). (a) A 10-min segment of signal during the onset
of a seizure event. (b) A 7.5-hour segment of spectrogram showing multiple
seizure events. The three rows show the uncompressed signal, CR = 4x, and
CR = 8x, respectively.

frequency of 250Hz. A l1-norm based reconstruction algo-
rithm was implemented in MATLAB [12], [15]. Fig. 7 shows
the experimental results using one of the patients’ data. The
reconstructed signals from a CR of 4x and 8x are plotted
in comparison with the original signal without compression.
M was fixed at 128 in this experiment. The time-domain
waveforms are shown in Fig. 7 (a). The spectrograms of a
continuous recording of 7.5 hours are shown in Fig. 7 (b).
The computed PSNR is 32.75dB at a CR of 8x. The resulting
loss due to compression is below the thermal noise floor
of intracranial EEG recording [51], indicating a sufficient
performance for research and clinical use.

We tested the neural recording system under mock attacks
using the CoA model. Fig. 8 shows the results of a total
of 200,000 CoA attacks to 200 data segments randomly
selected from the two patients’ recordings. For each data
segment, Bob had one reconstruction using the genuine key,
while Eve made 1000 reconstruction attempts using randomly
generated keys. Here we assumed Eve had prior knowledge of
the targeting signals’ characteristics, thus Eve used the same
basis � as Bob for the signal reconstruction. Fig. 8 (a) shows
the correlation coefficients ρ (the higher the better) between
Bob’s and Eve’s reconstructed signals and the original signals.
The ρ as defined by Pearson was calculated as:

ρ =
N

N∑
i=1

xi x̂i −
N∑

i=1

xi

N∑
i=1

x̂i

√√√√N
N∑

i=1

x2
i − (

N∑
i=1

xi )
2

√√√√N
N∑

i=1

x̂i
2 − (

N∑
i=1

x̂i )
2

(6)

where x̂ is the reconstructed signal, N is the dimension of
the data segment. The ρ of Eve’s reconstructions are within a
random noise level. Fig. 8 (b) is the scatter graph of the results
from the 200 data segments with x-coordinate being the ρ of
Bob’s reconstruction and y-coordinate being the ρ of Eve’s
best shot. It should be noted that Eve doesn’t know which one
is the best shot since Eve doesn’t possess the original signal
as the ground truth. The highlighted red dots in (a) and (b)
show the trails where the performance of Eve’s best attack
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Fig. 8. Experiment of 200,000 mock attacks using the CoA model. (a) The
correlation coefficients (ρ) between Bob’s and Eve’s reconstructed signals
and the original signals. (b) The scatter graph of Bob’s reconstruction vs.
Eve’s best shot. (c) The time-domain waveforms of the trails where the �ρ
between Bob’s and Eve’s reconstruction was minimum. (d) Histograms of the
ρ of Bob’s and Eve’s reconstructions.

was closest to Bob’s reconstruction. The corresponding time-
domain waveforms are plotted Fig. 8 (c). Eve’s reconstruction
didn’t reveal meaningful information about the neural signals.
Fig. 8 (d) shows the distribution of Bob’s reconstructions and
Eve’s attacks. The results suggest that the CS neural recorder
is safe from CoA attacks.

As discussed in Section II-A, the CS based encryption
cannot prevent the energy of the signal x from being revealed,
and the energy features of neural signals often contain valuable
information. It should be noticed that the energy features of
the neural signals are not the same as the energy of the
wireless signals. To evaluate potential information leakage,
we used the two patients’ recordings with seizures. Long
periods of interictal data segments were removed to speed
up the experiment. Each marker in Fig. 9 indicates a data
segment with x-coordinate being the energy of the signal x
and y-coordinate being the energy of the CS measurement
y (without decipher). In addition, a circle marker (black)
indicates the segment contains neural signals with normal
activities, while a star marker (red) indicates the segment

Fig. 9. Experimental results of pseudo-random key shuffle.
(a−1,2) and (b−1,2) show analysis of EEGs from two patients, with
x-coordinate being the energy of the signal x and y-coordinate being the
energy of the CS measurement y. Black circle markers show segments
containing neural signals with normal activities, and red star markers show
segments containing neural signals with seizure onset. The left column
(a−1) and (b−1) use the same key for all CS measurements, and the right
column (a−2) and (b−2) use the pseudo-randomly scrambled keys for the
measurements of the same dataset.

contains neural signals with seizure onset. The plots in the
left column ((a-1) and (b-1)) use the same key for CS all
measurements. The results show that seizure events can be
classified using only the feature along the y-axis. In compar-
ison, the plots in the right column ((a-2) and (b-2)) use the
proposed key shuffle for the CS measurement of the same
dataset. As expected, seizure classification is not possible
using only the features in y. This experiment shows that the
proposed scheme successfully places an additional layer of
protection on the conventional CS based encryption.

As discussed in Section II.C, an adversary may non-
invasively detect the power profile of the neural recording
device and deduce timing characteristics of the encryption
system from power analysis. Although we assumed that
an adversary may acquire the timing information indirectly,
we directly measured it during the experiments to evaluate the
risk. Specifically, timing measurements were obtained using
randomly generated key vectors. The measurement results
confirmed that the execution of the ECC and ECDH protocols
are time constant. No input-dependent branches were observed
in 100,000 test runs. The results suggested that the scheme is
safe against timing-based attacks.

The power consumption of the developed prototype was
measured and compared with conventional implementations.
Fig. 10 shows the measurement results with a detailed power
breakdown. To compare the result with conventional encryp-
tion schemes, we implemented a 256-bit AES on the MCU
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Fig. 10. The measured power consumption of the developed wireless neural
recording system in comparison with conventional implementations. The
proposed encryption scheme achieved a 5.7x power saving for implementation
all in MCUs, while the ASIC design further reduced the power by 6.3x.
A 442μW was measured during a sampling rate of 500S/s and a CR of 8x.
The detailed power breakdown is shown on the right.

TABLE II

MEASURED SPECIFICATIONS SUMMARY

without data compression. The power consumption was mea-
sured to be 15.8mW including wireless transmission. Then we
implemented the proposed ECC and CS hybrid scheme both
on the MCU. The resulting power consumption was 2.77mW,
corresponding to a 5.7x power saving. At last, the power
consumption of the proposed device using the ASIC based
CS and the MCU based key handling was 442μW. This was
measured at a data rate of 500S/s and a CR of 8x. The results
suggest that the developed prototype achieved an over 35x
power saving compared with conventional encryption schemes.

The specifications and measured performance of the system
are summarized in Table II. In addition, the energy efficiency
for encryption is compared with prior low-power hardware
encryption studies in Table III. By taking advantage of the
sparsity of neural signals, energy efficient ASIC design and
MCU implementation, the proposed CS based encryption
achieved a high energy efficiency.

V. DISCUSSION

There are several limitations of this work that could be
addressed with future research. First, authentication is impor-
tant for exchanging public keys. Although the initial authen-
tication of medical devices can often be conducted in a
secure environment, such as during clinical visits, an integrated
digital signature algorithm would improve the robustness

TABLE III

COMPARISON WITH PRIOR LOW-POWER
HARDWARE ENCRYPTION STUDIES

and flexibility of the device. Established algorithms, such as
the elliptic curve digital signature algorithm (ECDSA), can
be implemented in the MCU [44]. Since the authentication
process happens at a low frequency, it would not significantly
impact the overall system power consumption.

Second, the dimension and resolution of the sampling
matrices are important for achieving the optimal performance
in terms of the reconstructed signal quality, maximum CR,
security level, as well as hardware costs. The design trade-offs
also include the targeted signal characteristics and the signal-
to-noise ratio. It would be worth studying these trade-offs and
implementing a configurable design in the future.

Third, differential power analysis (DPA) was not conducted
in this work. DPA based attacks try to obtain the private
keys by statistically analyzing the power consumption of the
device [28]. A thorough analysis and an IC level design that
eliminates the risks from DPA would be an important step
forward.

Finally, the MCU core can be integrated on-chip to further
reduce the device form-factor and the power overhead (at an
additional cost of silicon area). This is possible by integrat-
ing the Cortex-M0 core (freely available for research pur-
pose [64]) or other open-source RISC-V processors. A wireless
receiver (Rx) can be integrated on-chip for duplex wireless
handshaking, so that the 2.4GHz transceiver can be removed
from the system.

VI. CONCLUSION

In this paper, we developed an energy-efficient wireless
neural recording system with simultaneous data compression
and encryption. The system integrated an ultra-low power CS
ASIC and a general-purpose MCU. Novel techniques have
been proposed to eliminate the risks from malicious attacks
while maintaining an ultra-low power consumption. Experi-
mental results showed that the developed system achieves a
secure, reliable, energy-efficient neural recording over time.
Data encryption technology will be needed as therapies involv-
ing wireless neural interfaces become more prevalent in the
treatment of neurological disorders [65]. Moreover, the scheme
and circuit techniques introduced in this paper can be applied
to a wide range of applications where high energy-efficiency
and security are required.
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